
How to reduce cold starts for
Java Serverless applications in AWS

GraalVM, AWS SnapStart and Co

Vadym Kazulkin, ip.labs, FrOSCon , 6 August 2023

Contact

Vadym Kazulkin
 ip.labs GmbH Bonn, Germany

Co-Organizer of the Java User Group Bonn

v.kazulkin@gmail.com

@VKazulkin

https://dev.to/vkazulkin

https://github.com/Vadym79/

https://www.linkedin.com/in/vadymkazulkin

https://www.iplabs.de/

ip.labs

https://www.iplabs.de/

https://distantjob.com/blog/programming-languages-rank/ Vadym Kazulkin @VKazulkin , ip.labs GmbH

Life of the Java (Serverless) developer
on AWS

AWS Java Versions Support

• Corretto Java 8

• With extended long-term support until 2026

• Coretto Java 11 (since 2019)

• Coretto Java 17 (April 2023)

• Only Long Term Support (LTS) by AWS

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: https://aws.amazon.com/de/corretto/

Java ist very fast
and mature
programming
language…

Image: burst.shopify.com/photos/a-look-across-the-landscape-with-view-of-the-sea

… but Serverless
adoption of Java
looks like this

Vadym Kazulkin @VKazulkin , ip.labs GmbH

The State of Serverless 2021
https://www.datadoghq.com/state-of-serverless-2021

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Developers love Java and will be happy

to use it for Serverless

But what are the challenges ?

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Serverless with Java challenges

• “cold start” times (latencies)

• memory footprint (high cost in AWS)

AWS Lambda Basics

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Creating AWS Lambda with Java 1/3

:

Source https://blog.runscope.com/posts/how-to-write-your-first-aws-lambda-function

Full CPU access only
approx. at 1.8 GB
memory allocated

Creating AWS Lambda with Java 2/3

:

Source https://blog.runscope.com/posts/how-to-write-your-first-aws-lambda-function

Creating AWS Lambda with Java 3/3

:

Source https://docs.aws.amazon.com/lambda/latest/dg/java-context.html

Challenge Number 1 with Java is a

big cold-start

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: https://www.serverless.com/blog/keep-your-lambdas-warm

Function lifecycle- a full cold start

Sources: Ajay Nair „Become a Serverless Black Belt” https://www.youtube.com/watch?v=oQFORsso2go
Tomasz Łakomy "Notes from Optimizing Lambda Performance for Your Serverless Applications“ https://tlakomy.com/optimizing-lambda-performance-for-serverless-applications

• Start Firecracker VM

• AWS Lambda starts the JVM

• Java runtime loads and initializes

handler class

• Static initializer block of the handler class is
executed (i.e. AWS service client creation)

• Init-phase has full CPU access up to 10 seconds for
free for the managed execution environments

• Lambda calls the handler method

Sources: Ajay Nair „Become a Serverless Black Belt” https://www.youtube.com/watch?v=oQFORsso2go
Tomasz Łakomy "Notes from Optimizing Lambda Performance for Your Serverless Applications“ https://tlakomy.com/optimizing-lambda-performance-for-serverless-applications
Michael Hart: „Shave 99.93% off your Lambda bill with this one weird trick“ https://hichaelmart.medium.com/shave-99-93-off-your-lambda-bill-with-this-one-weird-trick-33c0acebb2ea

Lambda demo with common Java
application frameworks

Vadym Kazulkin @VKazulkin , ip.labs GmbHhttps://github.com/aws-samples/serverless-java-frameworks-samples

These are best case values after applying
optimization techniques and best practices

• Switch to the AWS SDK 2.0 for Java

• Lower footprint and more modular

• Allows to configure HTTP Client of your choice (i.e. Java own Basic HTTP Client or
newly introduced AWS Common Runtime async HTTP Client)

Source: https://aws.amazon.com/de/blogs/developer/announcing-availability-of-the-aws-crt-http-client-in-the-aws-sdk-for-java-2-x/
Vadym Kazulkin: https://dev.to/aws-builders/aws-sdk-for-java-2x-asynchronous-http-clients-and-their-impact-on-cold-start-times-and-memory-consumption-of-aws-lambda-366p

S3AsyncClient.builder()
.httpClientBuilder(AwsCrtAsyncHttpClient.builder()
.maxConcurrency(50))
.build();

Best Practices and Recommendations

https://aws.amazon.com/de/blogs/developer/announcing-availability-of-the-aws-crt-http-client-in-the-aws-sdk-for-java-2-x/

• Less (dependencies, classes) is more

• Include only required dependencies (e.g. not the whole AWS SDK 2.0 for Java, but the
dependencies to the clients to be used in Lambda)

• Exclude dependencies, which you don‘t need at runtime e.g. test frameworks like Junit

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: Stefano Buliani : "Best practices for AWS Lambda and Java„ https://www.youtube.com/watch?v=ddg1u5HLwg8
Sean O‘Toole „AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capitalone.com/tech/cloud/aws-lambda-java-tutorial-reduce-cold-starts/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javav2

<dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter-api</artifactId>

 <version>5.4.2</version>

 <scope>test</scope>

 </dependency>

<dependency>

 <groupId>software.amazon.awssdk</groupId>

 <artifactId>dynamodb</artifactId>

 <version>2.10.86</version>

 </dependency>

<dependency>

 <groupId>software.amazon.awssdk</groupId>

 <artifactId>bom</artifactId>

 <version>2.10.86</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

Best Practices and Recommendations

AWS Lambda cold starts by memory size,
runtime and artifact size

Source: Mike Roberts "Analyzing Cold Start latency of AWS Lambda" https://blog.symphonia.io/posts/2020-06-30_analyzing_cold_start_latency_of_aws_lambda

Artifact Size:

• Small zip (1KB)
• Large zip (48MB)
• Large uberjar (53MB)

Provide all known values (for building clients i.e. DynamoDB client) to
avoid auto-discovery

• credential provider, region, endpoint

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()
.withRegion(Regions.US_WEST_2)
.withCredentials(new ProfileCredentialsProvider("myProfile"))

.build();

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: Stefano Buliani : "Best practices for AWS Lambda and Java„ https://www.youtube.com/watch?v=ddg1u5HLwg8
Sean O‘Toole „AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capitalone.com/tech/cloud/aws-lambda-java-tutorial-reduce-cold-starts/

Best Practices and Recommendations

• Initialize dependencies during initialization phase

• Use static initialization in the handler class, instead of in the handler method (e.g.
handleRequest) to take the advantage of the access to the full CPU core for max 10 seconds

• In case of DynamoDB client put the following code outside of the handler method:

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()...build();
DynamoDB dynamoDB = new DynamoDB(client);

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: Stefano Buliani : "Best practices for AWS Lambda and Java„ https://www.youtube.com/watch?v=ddg1u5HLwg8
Sean O‘Toole „AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capitalone.com/tech/cloud/aws-lambda-java-tutorial-reduce-cold-starts/

Best Practices and Recommendations

Best Practices and Recommendations

• Prime dependencies during initialization phase (when it worth doing)

• „Fake“ the calls to pre-initalize „some other expensive stuff“

• In case of DynamoDB client put the following code outside of the handler method to pre-
initialize the Jackson Marshaller:

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()...build();
DynamoDB dynamoDB = new DynamoDB(client);

Table table = dynamoDB.getTable(„mytable");

Item item = table.getItem("Id", 210);

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: Stefano Buliani : "Best practices for AWS Lambda and Java„ https://www.youtube.com/watch?v=ddg1u5HLwg8
Sean O‘Toole „AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capitalone.com/tech/cloud/aws-lambda-java-tutorial-reduce-cold-starts/

getItem() call forces Jackson Marshallers to initialize

Best Practices and Recommendations
Using Tiered Compilation

Achieve up to 60% faster startup times can use level 1 compilation with
little risk of reducing warm start performance

Mark Sailes: "Optimizing AWS Lambda function performance for Java”
https://aws.amazon.com/de/blogs/compute/optimizing-aws-lambda-function-performance-for-java/

Avoid:

• reflection

• runtime byte code generation

• runtime generated proxies

• dynamic class loading

Use DI Frameworks which aren‘t reflection-based

Vadym Kazulkin @VKazulkin , ip.labs GmbH

Source: Stefano Buliani : "Best practices for AWS Lambda and Java„ https://www.youtube.com/watch?v=ddg1u5HLwg8
Sean O‘Toole „AWS Lambda Java Tutorial: Best Practices to Lower Cold Starts” https://www.capitalone.com/tech/cloud/aws-lambda-java-tutorial-reduce-cold-starts/

Best Practices and Recommendations

GraalVM enters the scene

Source: https://www.graalvm.org/

GraalVM

Goals:

Low footprint ahead-of-time mode for JVM-based languages

High performance for all languages

Convenient language interoperability and polyglot tooling

Source: „Everything you need to know about GraalVM by Oleg Šelajev & Thomas Wuerthinger” https://www.youtube.com/watch?v=ANN9rxYo5Hg

GraalVM
Architecture

Sources: Practical Partial Evaluation for High-Performance Dynamic Language Runtimes http://chrisseaton.com/rubytruffle/pldi17-truffle/pldi17-truffle.pdf
„The LLVM Compiler Infrastructure“ https://llvm.org/

SubstrateVM

Source: Oleg Šelajev, Thomas Wuerthinger, Oracle: “Deep dive into using GraalVM for Java and JavaScript”
https://www.youtube.com/watch?v=a-XEZobXspo

GraalVM on SubstrateVM
A game changer for Java & Serverless?

Java Function compiled into a native executable using
GraalVM on SubstrateVM reduces

• “cold start” times

• memory footprint

by order of magnitude compared to running on JVM.

Current challenges with native
executable using GraalVM

• AWS doesn’t provide GraalVM (Native Image) as Java Runtime out
of the box

• AWS provides Custom Runtime Option

Custom Lambda Runtimes

Support of GraalVM native images in
Frameworks

Spring Native project for Spring (Boot)

Quarkus: a Kubernetes Native Java framework developed by Red Hat tailored for
GraalVM and HotSpot, crafted from best-of-breed Java libraries and standards.

Micronaut: a modern, JVM-based, full-stack framework for building modular,
easily testable microservice and serverless applications.

Helidon: a cloud-native, open-source set of Java libraries for writing
microservices that run on a fast web core powered by Netty.

Common principles for all frameworks

• Rely on as little reflection as possible

• Avoid runtime byte code generation, runtime generated proxies and
dynamic class loading as much as possible

• Process annotations at compile time

• Provide GraalVM Native Image support out of the box (Gradle and Maven
plugins)

Lambda demo with common Java
application frameworks

Vadym Kazulkin @VKazulkin , ip.labs GmbHhttps://github.com/aws-samples/serverless-java-frameworks-samples

Frameworks Ready for Graal VM Native Image

Vadym Kazulkin @VKazulkin , ip.labs GmbHhttps://www.graalvm.org/native-image/libraries-and-frameworks/

Graal VM Conclusion
• GraalVM and Frameworks are really powerful with a lot of potential

• GraalVM Native Image improves cold starts and memory footprint
significally

• GraalVM Native Image is currently not without challenges

• AWS Lambda Custom Runtime requires Linux executable only

• Building Custom Runtime requires some additional effort

• e.g. you need to scale CI pipeline to build memory-intensive native image yourself

• Build time is a factor

• You pay for the init-phase of the function packaged as AWS Lambda Custom and Docker
Runtime

• Init-phase is free for the managed runtimes like Java 8 , Java 11 and Java17 (Corretto)

AWS SnapStart

Vadym Kazulkin @VKazulkin , ip.labs GmbH

AWS SnapStart Deployment and Invocation

Vadym Kazulkin @VKazulkin , ip.labs GmbHhttps://aws.amazon.com/de/blogs/compute/reducing-java-cold-starts-on-aws-lambda-functions-with-snapstart/

Lambda uses
the CRaC APIs
for runtime
hooks

C
Create

Snapshot

microVM create &
restore snapshot is
based on CRIU

CRIU (Checkpoint/Restore in Userspace)

• Linux CRIU available since 2012 allows a running application to be paused and
restarted at some point later in time, potentially on a different machine.

• The overall goal of the project is to support the migration of containers.
• When performing a checkpoint, essentially, the full context of the process is saved:

program counter, registers, stacks, memory-mapped and shared memory
• To restore the application, all this data can be reloaded and (theoretically) it

continues from the same point.
• Challenges

• open files
• network connections
• sudden change in the value of the system clock
• time-based caches

https://criu.org/Main_Page

• Speed up warmup time of the Java applications
• The C2 compiler is used for very hot methods, which uses profiling data

collected from the running application to optimize as much as possible.
• Techniques like aggressive method inlining and speculative optimizations can

easily lead to better performing code than generated ahead of time (AOT)
using a static compiler.

• JVM needs both time and compute resources to determine which methods to
compile and compiling them. This same work has to happen every time we
run an application

• Ideally, we would like to run the application and then store all the state about
the compiled methods, even the compiled code and state associated with the
application and then we’d like to be able to restore it

https://www.azul.com/blog/superfast-application-startup-java-on-crac/ https://github.com/CRaC/docs

Ideas behind CRaC (Coordinated Restore
at Checkpoint)

https://www.azul.com/blog/superfast-application-startup-java-on-crac/

AWS SnapStart Deployment and Invocation

Vadym Kazulkin @VKazulkin , ip.labs GmbHhttps://dev.to/vkazulkin/measuring-java-11-lambda-cold-starts-with-snapstart-part-1-first-impressions-30a4

AWS SAM:

GetProductByIdFunction:
 Type: AWS::Serverless::Function
 Properties:
 AutoPublishAlias: SnapStart
 SnapStart:
 ApplyOn: PublishedVersions

AWS SnapStart Deployment and Invocation

Vadym Kazulkin @VKazulkin , ip.labs GmbH
Source: Vadym Kazulkin
https://dev.to/aws-builders/measuring-java-11-lambda-cold-starts-with-snapstart-part-5-priming-end-to-end-latency-and-deployment-time-jem

AWS SnapStart enabled with Pure Java Priming

<groupId>io.github.crac</groupId>
<artifactId>org-crac</artifactId>
<version>0.1.3</version>

Source: Vadym Kazulkin
https://dev.to/aws-builders/measuring-java-11-lambda-cold-starts-with-snapstart-part-5-priming-end-to-end-latency-and-deployment-time-jem

AWS SnapStart enabled comparison

Vadym Kazulkin @VKazulkin , ip.labs GmbH
Source: Vadym Kazulkin
https://dev.to/aws-builders/measuring-java-11-lambda-cold-starts-with-snapstart-part-5-priming-end-to-end-latency-and-deployment-time-jem

AWS SnapStart with Micronaut extended Priming

Source: Vadym Kazulkin
https://dev.to/aws-builders/measuring-java-11-lambda-cold-starts-with-snapstart-part-6-priming-the-request-invocation-30od

AWS SnapStart enabled with Priming
comparison

Vadym Kazulkin @VKazulkin , ip.labs GmbH
Source: Vadym Kazulkin
https://dev.to/aws-builders/measuring-java-11-lambda-cold-starts-with-snapstart-part-6-priming-the-request-invocation-30od

AWS SnapStart Challenges & Limitations

Vadym Kazulkin @VKazulkin , ip.labs GmbH

One big challenge: not the complete cold start time is shown in the
CloudWatch queries measuring it with SnapStart enabled

• Snapshot restore outside of Lambda are currently not captured

• Measure end to end Amazon API Gateway request latency to see

 the total cold +warm start

AWS SnapStart Challenges & Limitations

• SnapStart supports the Java 11 and 17 (Corretto) managed runtime only

• Deployment with SnapStart enabled takes more than 2,5 minutes additionally

• Snapshot is deleted from cache if Lambda function is not invoked for 14 days

• Pricing is a bit difficult to understand

• SnapStart currently does not support :

• Provisioned concurrency

• arm64 architecture (supports only x86)

• Amazon Elastic File System (Amazon EFS)

• Ephemeral storage greater than 512 MB

Vadym Kazulkin @VKazulkin , ip.labs GmbHhttps://docs.aws.amazon.com/lambda/latest/dg/snapstart.html

AWS SnapStart Possible Next Steps

• Perform Priming out of the box without writing the logic on our own

• If snapshot not found do regular cold start and create snapshot under the hood

• Currently snapshot is taken after 1 or several Lambda invocations

• No C2 compiler optimization took place -> no peak performance to expect

• Peak performance can be achieved after 10.000 function invocations

• Optionally provide the possibility to snapshot the function after C2 finished
optimization

• Big trade off involved between additional Lambda cost, deployment
frequency and duration until snapshot is taken and function performance
gain

Vadym Kazulkin @VKazulkin , ip.labs GmbH

NEW: Lambda Proactive initialization

In June 2023 AWS updated the documentation for the Lambda Function lifecycle
and included this new statement: for functions using unreserved (on-demand)
concurrency, Lambda may proactively initialize a function instance, even if there's
no invocation. When this happens, you can observe an unexpected time gap
between your function's initialization and invocation phases. This gap can appear
similar to what you would observe when using provisioned concurrency.

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtime-environment.html
https://aaronstuyvenberg.com/posts/understanding-proactive-initialization

Running this query over
several days across
multiple runtimes and
invocation methods,
between 50% and 75%
of initializations were
proactive (versus
50% to 25% which were
true cold starts)

www.iplabs.de

Accelerate Your Photo Business

Get in Touch

https://www.iplabs.de/
https://www.iplabs.de/
http://www.iplabs.de/en

	Folie 1: How to reduce cold starts for Java Serverless applications in AWS
	Folie 2
	Folie 3: ip.labs
	Folie 4
	Folie 5:
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10: Serverless with Java challenges
	Folie 11:
	Folie 12: Creating AWS Lambda with Java 1/3
	Folie 13: Creating AWS Lambda with Java 2/3
	Folie 14: Creating AWS Lambda with Java 3/3
	Folie 15
	Folie 16: Function lifecycle- a full cold start
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21: AWS Lambda cold starts by memory size, runtime and artifact size
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27:
	Folie 28: GraalVM
	Folie 30: GraalVM Architecture
	Folie 31: SubstrateVM
	Folie 33: GraalVM on SubstrateVM A game changer for Java & Serverless?
	Folie 34: Current challenges with native executable using GraalVM
	Folie 35: Custom Lambda Runtimes
	Folie 36: Support of GraalVM native images in Frameworks
	Folie 37
	Folie 59
	Folie 62
	Folie 63
	Folie 64:
	Folie 66
	Folie 67
	Folie 68
	Folie 70
	Folie 71
	Folie 72
	Folie 74
	Folie 75
	Folie 77
	Folie 78
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84: Accelerate Your Photo Business

