
FROM 0 TO KUBERNETES
AN INTRODUCTION TO CONTAINER
ORCHESTRATION

ABOUT ME

HI, I’M HEIKO
▸ I’m a Senior Consultant from a company you never

heard

▸ I help putting EVs in the Cloud

▸ (Event) Photography

▸ Longboarding

▸ /in/heikoborchers/

▸ @archang3l_media

▸ @archang3l_media@chaos.social

ABOUT ME

HI, I’M CEDI

▸ I’m a Senior SRE at $BigTech

▸ I do resiliency engineering

▸ (Analog) Photography

▸ Brazilian Jiu-Jitsu

▸ /cedi /in/cekienzl

▸ @cedi@hachyderm.io

CONTAINER & VM
CONTAINERS, CONTAINERS EVERYWHERE

source

https://www.weave.works/blog/a-practical-guide-to-choosing-between-docker-containers-and-vms

PRO CON
‣ Consistency

‣ Automation

‣ Stability

‣ Scalability

‣ Yet another layer…

‣ Learning Curve

‣ Documentation

‣ Plethora of tools

CONTAINER! WHY?

VM ORCHESTRATION

CONTAINER! WHY?

CONTAINER ORCHESTRATION

ORCHESTRATION
CONTAINER

DOCKER COMPOSE
CONTAINER ORCHESTRATION

COMPOSE IS A TOOL FOR DEFINING AND RUNNING MULTI-
CONTAINER DOCKER APPLICATIONS. WITH COMPOSE, YOU USE
A YAML FILE TO CONFIGURE YOUR APPLICATION’S SERVICES.
THEN, WITH A SINGLE COMMAND, YOU CREATE AND START ALL
THE SERVICES FROM YOUR CONFIGURATION.

Docker Compose Documentation

DOCKER COMPOSE

CONTAINER ORCHESTRATION

DOCKER-COMPOSE

PRO CON
‣ Easy

‣ Multiple Environments on a single host

‣ Stability

‣ Reproducible

‣ Declarative / Infrastructure as Code

‣ Single Host Deployments

CLOUD SOLUTIONS
CONTAINER ORCHESTRATION

YES, BUT…

HONORABLE MENTIONS
CONTAINER ORCHESTRATION

KUBERNETES

NOW, WHAT _IS_ KUBERNETES?
SPOILER ALERT,

IT’S NOT A SINGLE TOOL

KUBERNETES DEFINES A SET OF BUILDING BLOCKS
("PRIMITIVES") THAT COLLECTIVELY PROVIDE
MECHANISMS THAT DEPLOY, MAINTAIN, AND SCALE
APPLICATIONS

Wikipedia

WHAT IS KUBERNETES?

DISTRIBUTIONS
KUBERNETES

KUBERNETES

DISTRIBUTIONS

DEVELOPMENT SINGLE NODE / EDGE PRODUCTION

KUBERNETES

DISTRIBUTIONS… CONTINUED…

ENTERPRISE CLOUD

BUT WHEN?
KUBERNETES

LETS PLAY A GAME…
KUBERNETES, BUT WHEN?

SERVING STATIC CONTENT?
IS KUBERNETES THE RIGHT CHOICE FOR

NO!!!

DATABASES?
IS KUBERNETES THE RIGHT CHOICE FOR

NO!!!

PLANT / FACTORY / PHYSICAL SAFETY
CONTROL SOFTWARE?

IS KUBERNETES THE RIGHT CHOICE FOR

NO!!!

STATEFUL WORKLOAD?
IS KUBERNETES THE RIGHT CHOICE FOR

IT DEPENDS

NO*
* when state is kept in the software

YES*
* when state is kept external (in a database cluster or object storage)

YOUR COMPANIES (LEGACY/
ENTERPRISE) JAVA APPLICATION?

IS KUBERNETES THE RIGHT CHOICE FOR

MAYBE?

PRO CON
‣ Improve density (in comparison to

running each Application on a single
host)

‣ Isolation (no JVM dependency chaos)

‣ State is probably (hopefully) stored
somewhere else anyway

‣ It will not scale (better) than before

‣ Low utilization of Kubernetes
native features

EDGE COMPUTING?
IS KUBERNETES THE RIGHT CHOICE FOR

MAYBE?

PRO CON
‣ Running your services in a

standardized way close to the
consumer

‣ Distributed sync

‣ State can (and should) be stored
centrally

‣ Managing multiple Kubernetes
Clusters requires much more
planning

‣ Multi-Cluster deployments are hard
to facilitate

‣ Latency constraints for inter-cluster
communication

STATELESS MICRO-SERVICES?
IS KUBERNETES THE RIGHT CHOICE FOR

YES!

SERVERLESS COMPUTING?
IS KUBERNETES THE RIGHT CHOICE FOR

YES*!
* but you need additional software

DEFAULT TO KUBERNETES ONLY WHEN
THERE’S NOT A BETTER OPTION FOR
YOUR WORKLOADS.

Karl Isenberg

KUBERNETES, BUT WHEN?

KUBERNETES, BUT WHEN?

EVALUATE CAREFULLY

IS KUBERNETES REALLY THE RIGHT CHOICE FOR YOU?

▸ What are your functional infrastructure requirements?

▸ What are your scaling requirements?

▸ How do you handle state in your workload?

▸ Do you have the operational capacity to operate a Kubernetes cluster?

KUBERNETES, BUT WHEN?

EVALUATE CAREFULLY

POSSIBLE ALTERNATIVES

▸ IaaS: Hetzner, Azure VMSS, AWS EC2

▸ PaaS: Heroku, Azure WebApps, AWS Elastic Beanstalk

▸ CaaS: DigitalOcean Droplets, Azure Container Instances, AWS Fargate

▸ FaaS: Azure Functions, AWS Lambda

BUT HOW?
KUBERNETES

KUBERNETES

DISTRIBUTIONS

DEVELOPMENT SINGLE NODE / EDGE PRODUCTION

KUBERNETES

GET STARTED WITH A DEV ENVIRONMENT

▸ Make your first steps with “kind” on your local machine

BUT HOW (TO GET STARTED)

SINGLE NODE-, EDGE-, (AND HOMELAB) DEPLOYMENT

▸ K3s on a single node is good enough for your home-lab

▸ Multi-node K3s is probably enough for most use-cases!

▸ Use a systemd service unit to keep k3s running

▸ Use the K3s Ansible Playbook

BUT HOW (TO GET STARTED)

IF YOU REALLY WANT TO GO ALL THE WAY

▸ Use the Cluster API

▸ Declarative Management isn’t just nice for workload but for  
entire clusters too

▸ Read the documentation of clustermgr

▸ Since most of you deploy to hetzner anyway

▸ ccl.pw/cluster-api-hetzner

▸ This isn’t gonna be easy! But we warned you :)

https://ccl.pw/cluster-api-hetzner

DEPLOY WORKLOAD

DEPLOY A WORKLOAD

PODS

POD CONTAINER

DEPLOY A WORKLOAD

MANAGING PODS

REPLICA
SET

POD

POD

DEPLOYME
NT

DEPLOY A WORKLOAD

MANAGING PODS

(CORN)
JOBS POD

DAEMON
SET POD

STATEFUL
SET POD

RUN A POD ONCE/RECURRING

RUN ONE POD ON EACH VM

DO MAGIC WITH THE POD

PLEASE DON’T*
A WORD ON “KUBECTL APPLY -F” AND “HELM INSTALL”

* I mean, it’s fine on dev. But certainly not on prod

BUT HOW

DON’T INSTALL ANYTHING MANUALLY ON YOUR (PROD) CLUSTER

▸ Not reproducible

▸ Leads to “Snowflake” Deployments

▸ Hard to audit (what, when, and why?)

▸ Keeping a historical record of changes is hard

▸ Almost impossible to do proper secrets management

GIT-OPS TO THE RESCUE
BUT HOW?

DEVELOPMENT DEPLOYMENT

Continuous 
Integration

Kubernetes 
GitOps

PUSH PULL
‣ Continuous Delivery Pipeline

applies configuration to
Kubernetes Cluster

‣ Requires your CD Pipeline to have
access to the Cluster

‣ Does not detect configuration drift

‣ GitOps Operator runs inside the
Kubernetes Cluster and pulls
changes from Git and applies them
to the Cluster from the inside

‣ Requires the GitOps Operator to
have access to the Repository

‣ Can detect configuration drift and
revert manual changes

ARGO-CD
GIT-OPS

GIT-OPS

ARGO-CD

▸ Easy to use

▸ Declarative

▸ Nice looking management UI

▸ Easily extensible with your favorite secret management solution

▸ Avoid config drift

▸ reconcile loop can roll-back manual changes automatically

SECRET MANAGEMENT
GIT-OPS

GIT-OPS

SECRET MANAGEMENT

▸ Encrypts whole files

▸ Based on PGP

▸ Git-Diff won’t work at all

GIT-CRYPT MOZILLA SOPS
▸ Encrypts only YAML Value

▸ Can use a multitude of credential
providers and encryption methods
(PGP, AGE, Vault, …)

▸ Git-diff works (to some extent)

SOPS

HOW TO SERVE YOUR APPLICATION
NETWORKING

NETWORKING

THE ABSOLUTE BASICS

▸ Pod-Spec exposes a Port

▸ A Service selects Pods via labels

▸ Service specifies an exposed Port

▸ The Service ensures traffic is served to the Pod on the Pods Port

NETWORKING

SERVICES

PODSERVICEPOD

NETWORKING

HOW TO SERVE CUSTOMER TRAFFIC

NETWORKING

EASY MODE: NODE PORT

▸ No Load-Balancing and auto-failover

▸ Available Node-Port Range is 30000-32767

▸ No reserved ports (80, 443, etc.)

NETWORKING

NODE-PORT

PODSERVICECLIENT

NETWORKING

ADVANCED MODE: LOADBALANCER

▸ Expensive (usually each LoadBalancer is billed separately, for existence &
traffic)

▸ Certificate management is limited by the Cloud-Provider capabilities

▸ Requires a Cloud-Provider with LoadBalancer support

▸ TLS usually terminated at the LB

▸ Only works for domains, not paths

NETWORKING

LOADBALANCER

PODSERVICELBCLIENT

NETWORKING

EXPERT LEVEL: INGRESS CONTROLLER

▸ 99,9% of the time simply use ingress-nginx or envoy

▸ Domain Auto discovery

▸ Certificates can be issued automatically

▸ High performance

▸ Works on URL paths

NETWORKING

INGRESS

PODSERVICELBCLIENT INGRESS

KUBERNETES BUT HOW

WRAP-UP

▸ Take a Pi, install K3s

▸ Deploy your workload with Helm and or Kustomize

▸ Secure your secrets with SOPS and don’t leak them to Git

▸ Keep your Cluster reconciled with ArgoCD

▸ Use ingress-nginx to serve incoming requests

CONGRATS, NOW YOU HAVE A K8S CLUSTER TO MAINTAIN

/archang3l_media /in/heikoborchers

@archang3l_media@chaos.social

Q&A TIME
THANKS FOR LISTENING!

/cedi /in/cekienzl

@cedi@hachyderm.io

SHAMELESS SELF-PLUG

RELATED TALKS AND TOPICS

▸ Decoding Site Reliability Engineering: An Exploration of SRE, DevOps, and Platform Engineering

▸ ccl.pw/decoding-sre

▸ Modern Observability - Scalable Observability with the LGTM Stack: Harnessing the Power of Loki, Grafana,
Tempo, and Mimir

▸ ccl.pw/modern-o11y

▸ Understanding Alerting - How to come up with a good enough alerting strategy (GPN 20)

▸ ccl.pw/alerting

▸ Kubernetes, the good, the bad and the Ugly (GPN 20)

▸ ccl.pw/k8s-the-good-the-bad-the-ugly

http://ccl.pw/decoding-sre
http://ccl.pw/modern-o11y
https://ccl.pw/alerting
https://ccl.pw/k8s-the-good-the-bad-the-ugly

