
FrOSCon | 06.08.2023 | Hochschule Bonn-Rhein-Sieg

Crinit
an embedded, security-aware init system

Andreas Zdziarstek | emlix GmbH

2023-08-06 | © emlix GmbH

 slide 2

Another init system? Who did this?

 Andreas Zdziarstek

 Systems Engineer
 emlix GmbH

 embedded Linux company
 BSP and Kernel development
 product maintenance
 open-source component

qualification
 test automation
 ...
 And now: an init system

Our Partner:

 Elektrobit Automotive GmbH

 Automotive software company
 ECUs
 Driver Assistance
 Infotainment
 Connected Vehicles

 slide 3

An init system? What’s that again?

 sometimes also called init manager
 Examples: systemd and sysvinit (“UNIX System V

init”), also busybox-init, runit, upstart,...
 runs as PID 1, started by the Kernel at boot
 do some system setup and housekeeping
 start “everything else” until system is ready
 maybe do some process management at system

runtime
 handle shutdown

systemd just doing its thing

 slide 4

Okay,... but why another one?

DISCLAIMER: Both systemd and sysvinit are great at what they do!

(Apologies to everyone who came here hoping for a half-hour rant on either topic.)

Motivation
 specifically developed for embedded targets
 small, testable codebase
 simple usage, simple configs

 ⇒ so busybox-init it is :) ✅

er, no because at the same time:
 parallel execution with ordering when necessary
 get by without shell scripts
 configuration signatures
 runtime configuration interface (start/stop/add/list/... tasks)
 possibility to integrate with elos (daemon to collect and publish system events, see it at our booth!)

Image Source: openclipart.org, Public Domain

 slide 5

Crinit, what’s (currently) in it?

 starting of Tasks according to dependencies
 dependency resolution (starting order) as a directed graph
 independent branches/subdivisions are ran in parallel
 dependencies may be on other tasks, available system features, control API interaction, and defined

dependency groupings
 control API in C and a control program (crinit-ctl)

 add new tasks, modify/override existing ones
 query status
 shutdown/reboot

 IO redirection (STDOUT/ERR/IN) to files and named pipes
 global and local process environment settings
 task definition includes
 (almost!) task event reporting to elos and dependencies on elos events
 (almost!) optional RSA-PSS signature checking of configuration files and task definitions

 slide 6

Starting is half the Task(file)

─────┬──
1 │ # Example Daemon Task file. The daemon is a hypothetical one that does "something" and
2 │ # also syslog.
3 │
4 │ NAME = some-daemon
5 │ INCLUDE = daemon_env_preset
6 │
7 │ COMMAND = /usr/bin/somedaemond -d
8 │
9 │ DEPENDS = @provided:tmp @provided:network some-daemon-setup:wait
10 │ PROVIDES = some-daemon:spawn syslog:spawn
11 │
12 │ RESPAWN = NO
13 │ RESPAWN_RETRIES = 3
14 │
15 │ ENV_SET = SOME_DAEMON_LISTEN_ADDR "0.0.0.0"
16 │ SOME_DAEMON_SOCKET "1337"
17 │ SOME_DAEMON_FULL_ADDR "${SOME_DAEMON_LISTEN_ADDR}:${SOME_DAEMON_SOCKET}"
18 │
19 │ IO_REDIRECT = STDOUT "/var/log/some-daemon.log" APPEND 0644
20 │ IO_REDIRECT = STDERR STDOUT

─────┴──

 slide 7

Dependency (management) is not a weakness!

Task 1
Dependencies:

A B C

Task 2
Dependencies:

B

Task 3
Dependencies:

B C

Task 4
Dependencies:

B
...

Task N
Dependencies:

[...]

B "happens"

Task 1
Dependencies:

A C

Task 2
Dependencies:

--

Task 3
Dependencies:

C

Task 4
Dependencies:

--
...

Task N
Dependencies:

[...]

Separate

handler thread

Separate

handler thread

Task 2 running Task 4 running

Search order in database

 slide 8

An API you can depend upon

crinit-ctl

other clients

libcrinit-client crinit
C API UNIX socket

 Tasks
 add new ones
 overwrite old ones
 enable/disable (temporarily)
 terminate, kill, restart
 get status

 Global Settings
 load a new set of global settings from file
 reload Tasks if necessary

 System
 poweroff and reboot

 Client
 sd_notify() of systemd fame: Let crinit know

you are alive!

 slide 9

Something with crypto(graphy)

 if configured (through Kernel cmdline), crinit will verify file signatures
 for global settings and task/include/dependency-group files

 signature is expected as .sig-file
 Algorithm: RSA-PSS (RSA-4096 w. SHA256)
 A trusted root public key must be in the system keyring on boot

 can be compiled into Kernel, or provided by e.g. HSM
 secure boot necessary

 additional downstream public keys may be in rootfs but must be signed with root key

 slide 10

Showtime!

Now, we’ll see crinit in action. Hold on to your seats!

 slide 11

A brighter tomorrow! (Our plans for the future...)

 Open-Source release!! (real soon™, see https://github.com/Elektrobit/crinit)
 better sd_notify() support and integration

 currently bare-bones and source-code level
 support for running process with reduced capabilities (but not full containerization)

 setting process UID/GID/capabilities
 cgroups
 seccomp
 ...

 of course: more testing, optimization

https://github.com/Elektrobit/crinit

 slide 12

∑(crinit)

 crinit – a new embedded init system!
 It’s small, fast, and multi-tasky!
 You can tell it to do stuff through a library!
 Works great together with elos!
 Can check if someone messed around with your config files!
 Soon to be open-source. Check the news at https://www.emlix.com or try

https://github.com/Elektrobit/crinit
 Come to our booth to see it running with elos

Testimonial: “Once it’s open-source, I think I’ll try this out for my own projects.” - a discerning colleague

I hope you will, too!

https://www.emlix.com/
https://github.com/Elektrobit/crinit

 slide 13

Question time!

If you have questions (or strong opinions on init systems),
now is the time to share them.

 slide 14

How can we support you?

emlix GmbH
Göttingen | Berlin | Bonn

Headquarter
Berliner Str. 12
D-37073 Göttingen / Germany

Fon +49 (0) 551 / 306 64 - 0
solutions@emlix.com
www.emlix.com

http://www.emlix.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

