
TESTING MULTI-OS PYTHON SOFTWARETESTING MULTI-OS PYTHON SOFTWARETESTING MULTI-OS PYTHON SOFTWARETESTING MULTI-OS PYTHON SOFTWARETESTING MULTI-OS PYTHON SOFTWARETESTING MULTI-OS PYTHON SOFTWARETESTING MULTI-OS PYTHON SOFTWARETESTING MULTI-OS PYTHON SOFTWARETESTING MULTI-OS PYTHON SOFTWARETESTING MULTI-OS PYTHON SOFTWARETESTING MULTI-OS PYTHON SOFTWARETESTING MULTI-OS PYTHON SOFTWARE

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

INTRODUCTIONINTRODUCTION
Introduction

Unit tests in python

Automating tests

General tips and techniques

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

ABOUT MEABOUT ME
Developer job at open source software company uib GmbH, see

Part of backend team at opsi Project, see

I love to automate things and make work�ows simple, reproducible and robust

https://uib.de

https://opsi.org

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

https://uib.de/
https://opsi.org/

WHY SOFTWARE TESTINGWHY SOFTWARE TESTING
To �nd bugs (obviously)

To not break things when refactoring code

To be robust against malicious or stupid user input

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

WHY SOFTWARE TESTINGWHY SOFTWARE TESTING
To �nd bugs (obviously)

To not break things when refactoring code

To be robust against malicious or stupid user input

"Programming today is a race between software engineers striving to build bigger and better idiot-proof
programs, and the Universe trying to produce bigger and better idiots. So far, the Universe is winning."

- Rick Cook

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

TYPES OF TESTINGTYPES OF TESTING
Unit testing: testing single components and core functionalities

Integration testing: testing interfaces and collaboration of different components

End-to-end testing: testing complete work�ow over all involved components

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

TYPES OF TESTINGTYPES OF TESTING
Unit testing: testing single components and core functionalities

Integration testing: testing interfaces and collaboration of different components

End-to-end testing: testing complete work�ow over all involved components

This talk focuses on unit testing python applications through python frameworks.
Most concepts may be generalized.

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

UNIT TESTS IN PYTHONUNIT TESTS IN PYTHON

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

PYTEST CONCEPTPYTEST CONCEPT
Command line tool to collect test scenarios from directory - see

Execute tests one by one and evaluate results

Human-readable summary in output (info of failed tests, percentage of test coverage per �le)

Generates line-by-line status �le for tools

https://docs.pytest.org

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

https://docs.pytest.org/

PYTEST IS USEFUL… PYTEST IS USEFUL…
For conveniently testing functionality of a whole project or part of it

To parameterize tests (multiple inputs for the same function)

When working with different environments (markers control which tests run where and how)

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

PYTEST EXAMPLE CODEPYTEST EXAMPLE CODE
Given a function you want to test

(It obfuscates a string by shifting each letter by 13 positions)

ROT13 = str.maketrans(
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
"NOPQRSTUVWXYZABCDEFGHIJKLMnopqrstuvwxyzabcdefghijklm"

)

def obfuscate(data: str) -> str:
return data.translate(ROT13)

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

PYTEST EXAMPLE TEST 1PYTEST EXAMPLE TEST 1
from testproject import obfuscate

def test_example() -> None:
assert obfuscate("Hello World") == "Uryyb Jbeyq"
assert obfuscate(obfuscate("teststring")) == "teststring"

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

PYTEST EXAMPLE TEST 1PYTEST EXAMPLE TEST 1
from testproject import obfuscate

def test_example() -> None:
assert obfuscate("Hello World") == "Uryyb Jbeyq"
assert obfuscate(obfuscate("teststring")) == "teststring"

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

PYTEST EXAMPLE TEST 2PYTEST EXAMPLE TEST 2
from testproject import obfuscate

import pytest

@pytest.mark.parametrize("data, result", (
("Hello World", "Uryyb Jbeyq"),
("The quick brown fox jumps over the lazy dog", "Gur dhvpx oebja sbk whzcf bire gur ynml qbt"),
("See you later!", "Frr lbh yngre!"),

))
def test_example2(data, result) -> None:

assert obfuscate(data) == result

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

PYTEST EXAMPLE TEST 2PYTEST EXAMPLE TEST 2
from testproject import obfuscate

import pytest

@pytest.mark.parametrize("data, result", (
("Hello World", "Uryyb Jbeyq"),
("The quick brown fox jumps over the lazy dog", "Gur dhvpx oebja sbk whzcf bire gur ynml qbt"),
("See you later!", "Frr lbh yngre!"),

))
def test_example2(data, result) -> None:

assert obfuscate(data) == result

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

PYTEST EXAMPLE TEST 3PYTEST EXAMPLE TEST 3
from testproject import obfuscate

import pytest

@pytest.mark.parametrize("data", (
"Let's meet at the park.",
"My number is 0176123456789"

))
def test_example3(data) -> None:

obfuscated = obfuscate(data)
for word in data.split(" "):
assert word not in obfuscated

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

PYTEST EXAMPLE TEST 3PYTEST EXAMPLE TEST 3

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

HYPOTHESIS CONCEPTHYPOTHESIS CONCEPT
A software tester walks into a bar.
Crawls into a bar.
Dances into a bar.
Flies into a bar.
And orders:
a beer.
99999999 beers.
0 beers.
a lizard in a beer glass.
-1 beer.
"qwertyuiop" beers.

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

HYPOTHESIS CONCEPTHYPOTHESIS CONCEPT
A software tester walks into a bar.
Crawls into a bar.
Dances into a bar.
Flies into a bar.
And orders:
a beer.
99999999 beers.
0 beers.
a lizard in a beer glass.
-1 beer.
"qwertyuiop" beers.

A real customer walks into the bar and asks where the bathroom is.
The bar goes up in �ames.

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

HYPOTHESIS CONCEPTHYPOTHESIS CONCEPT
De�ne what types of input data are allowed for a function

Check against arbitrary patterns following the scheme

Of�cial documentation at https://hypothesis.readthedocs.io

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

https://hypothesis.readthedocs.io/

HYPOTHESIS IS USEFUL… HYPOTHESIS IS USEFUL…
For identifying problematic input values

For checking against extreme instances of some types

Integer-like: zero, negative numbers, extremely small and big numbers, …

String-like: empty strings, long strings, special characters, …

Path-like: relative and absolute paths, spaces, backslash and other atrocities in �le names…

…

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

HYPOTHESIS EXAMPLE TEST 1HYPOTHESIS EXAMPLE TEST 1
from hypothesis import given, strategies

from testproject import obfuscate

@given(strategies.characters())
def test_obfuscate_hyp(chars):

assert obfuscate(obfuscate(chars)) == chars
assert obfuscate(chars) != chars

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

HYPOTHESIS EXAMPLE TEST 1HYPOTHESIS EXAMPLE TEST 1

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

HYPOTHESIS EXAMPLE TEST 2HYPOTHESIS EXAMPLE TEST 2
An example from of�cial site https://hypothesis.readthedocs.io

from hypothesis import given, strategies

@given(strategies.integers(), strategies.integers())
def test_ints_are_commutative(x, y):

assert x + y == y + x

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

https://hypothesis.readthedocs.io/

HYPOTHESIS EXAMPLE TEST 2HYPOTHESIS EXAMPLE TEST 2
An example from of�cial site https://hypothesis.readthedocs.io

from hypothesis import given, strategies

@given(strategies.integers(), strategies.integers())
def test_ints_are_commutative(x, y):

assert x + y == y + x

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

https://hypothesis.readthedocs.io/

HYPOTHESIS EXAMPLE TEST 3HYPOTHESIS EXAMPLE TEST 3
from hypothesis import given, strategies

@given(strategies.floats(), strategies.floats())
def test_floats_are_commutative(x, y):

assert x + y == y + x

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

HYPOTHESIS EXAMPLE TEST 3HYPOTHESIS EXAMPLE TEST 3

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

AUTOMATING TESTSAUTOMATING TESTS

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

GITLAB-CIGITLAB-CI
Git is a powerful tool!

Great open source software development platform gitlab - see

Feature gitlab-ci performs pipeline of de�ned jobs at each "git push"

Job consists of actions - executed consicutively as long as exit code is 0 (OK)

Talk of Erol Ülükmen at FrOSCon 2022:

https://about.gitlab.com

https://media.ccc.de/v/froscon2022-2795-ci_�rst

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

https://about.gitlab.com/
https://media.ccc.de/v/froscon2022-2795-ci_first

GITLAB-CIGITLAB-CI
Pytest has exit code 1 if one test fails.

So gitlab-ci job running pytest automatically fails on a test fail.

Further steps are not triggered (shipping to internal end-to-end testing environment or even production)

Author of commit is noti�ed

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

MULTI-PLATFORM PYTHON APPSMULTI-PLATFORM PYTHON APPS
Easy to build multi-platform apps with python

Development on one platform, then shipped to many

Fundamental differences between platforms

Con�g �les vs. registry

Handling of network shares and other resources

Users, �le permissions, …

…

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

TESTING ON MULTIPLE PLATFORMSTESTING ON MULTIPLE PLATFORMS
Some functionality can be mocked - e.g. simulating a web server

Certainty only if testing behavior on (all!) target platforms

Linux-like systems available in docker

Windows, MacOS systems as VMs

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

COLLECTING TEST RESULTSCOLLECTING TEST RESULTS
One gitlab-ci job per platform (running in container/VM)

Each pytest creates coverage �le (xml-format) and stores it as pipeline artifact

Final job collects artifacts and combines coverage �les (by using "coverage" tool - see
)

Result is human-readable summary and machine-readable coverage �le

https://coverage.readthedocs.io

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

https://coverage.readthedocs.io/

COLLECTING TEST RESULTSCOLLECTING TEST RESULTS
Example summary for "opsi-cli"

Name Stmts Miss Cover | Miss Cover (Windows only)

opsicli/__init__.py 11 0 100% | 0 100%

opsicli/__main__.py 105 9 91% | 9 91%

opsicli/cache.py 61 4 93% | 7 89%

opsicli/config.py 310 35 89% | 41 87%

opsicli/io.py 272 44 84% | 45 83%

opsicli/messagebus.py 136 35 74% | 106 22%

opsicli/opsiservice.py 75 29 61% | 58 23%

opsicli/plugin.py 181 10 94% | 10 94%

opsicli/types.py 110 10 91% | 12 89%

opsicli/utils.py 62 21 66% | 23 63%

plugins/client-action/python/__init__.py 37 0 100% | 4 89%

plugins/client-action/python/client_action_worker.py 32 3 91% | 25 22%

plugins/client-action/python/set_action_request_worker.py 125 19 85% | 111 11%

plugins/config/python/__init__.py 115 27 77% | 27 77%

plugins/jsonrpc/python/__init__.py 76 22 71% | 47 38%

plugins/manage-repo/python/__init__.py 106 4 96% | 4 96%

plugins/plugin/python/__init__.py 164 27 84% | 27 84%

plugins/self/python/__init__.py 152 36 76% | 63 59%

plugins/support/python/__init__.py 42 12 71% | 16 62%

plugins/support/python/worker.py 10 0 100% | 7 30%

plugins/terminal/python/__init__.py 22 3 86% | 3 86%

TOTAL 2260 340 85% | 646 71%

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

GENERAL TIPS AND TECHNIQUESGENERAL TIPS AND TECHNIQUES

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

TEST DRIVEN DEVELOPMENTTEST DRIVEN DEVELOPMENT
Reverse classical testing work�ow:

1. Think about tasks and how to wrap them in classes and functions

2. Write tests for each class and function

3. Implement the actual classes and functions so that tests do not fail

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

USE GIT BRANCHESUSE GIT BRANCHES
Main branch always ready for release

Individual feature- and �x- branches, merge request to main once complete and tested

Merge request reviewed and accepted/denied by another developer (principle of 4 eyes)

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

USE VIRTUAL ENVIRONMENTSUSE VIRTUAL ENVIRONMENTS
Virtual python environments are isolated from host system

Handle dependency management tailored to speci�c application

If you break it - you dont break your host system

Some frameworks assisting with that:

venv: very basic

conda environments: convenient

poetry: comfortable and �exible

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

USEFUL IDE FEATURESUSEFUL IDE FEATURES

Dev-container: isolated environment (tests do not
affect host)

Go-to-de�nition (e.g. CTRL + click): shows origin of
selected component

Coverage gutter: pytest coverage line by line

Git marker: added, changed, deleted lines
visualized

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

USE LINTERSUSE LINTERS
Linters highlight potential problems of all sorts

Some may even automatically �x small issues

pylint and ruff: check general python conventions

�ake8: checks code style

mypy: checks data types

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

USE TYPE HINTSUSE TYPE HINTS
Python is dynamically typed - variables can point to objects of different types.

Type hints help to keep types in mind

def get_length(value):
return len(value)

print(get_length("teststring")) # ok
print(get_length("1234")) # ok
print(get_length(1234)) # exception at runtime

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

USE TYPE HINTSUSE TYPE HINTS
Python is dynamically typed - variables can point to objects of different types.

Type hints help to keep types in mind

def get_length(value):
return len(value)

print(get_length("teststring")) # ok
print(get_length("1234")) # ok
print(get_length(1234)) # exception at runtime

def get_length(value: str) -> int:
return len(value)

print(get_length("teststring")) # ok
print(get_length("1234")) # ok
print(get_length(1234)) # IDE will probably warn you

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

DO NOT REINVENT THE WHEELDO NOT REINVENT THE WHEEL
Use recent python release for newest python standard library features

Python has a large community with thousands of cool libraries

Catalogue at

If you spot a problem: open an issue! Don’t just workaround

https://pypi.org

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

https://pypi.org/

THANK YOU FOR YOUR ATTENTION!THANK YOU FOR YOUR ATTENTION!
Questions?

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

ADDITIONAL MATERIAL: SETTING UP A NEW PROJECT WITH POETRYADDITIONAL MATERIAL: SETTING UP A NEW PROJECT WITH POETRY
poetry is a python dependency manager - see

poetry new <name> creates

pyproject.toml with general project info and dependency list

<name> directory with empty __init__.py �le (python package)

tests directory with empty `__init__.py �le (package for the tests)

poetry install creates virtual environment

https://python-poetry.org/

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

https://python-poetry.org/

ADDITIONAL MATERIAL: JENKINSADDITIONAL MATERIAL: JENKINS
Open source automation system

We use it for end-to-end tests:

Triggered by gitlab-ci or manual action

Jobs run on VMs, packages collected from development repository

Script controls how components interact

https://jenkins.io

TESTING MULTI-OS PYTHON SOFTWARE# TESTING MULTI-OS PYTHON SOFTWARE

https://jenkins.io/

