
FrOSCon 2009

Gradle

Hans Dockter

Gradle Project Lead

mail@dockter.biz

1

About Me

Founder and Project Lead of Gradle

CEO of Domain Language Germany (www.domainlanguage.de).

Consulting and Training for DDD in Germany (with Eric Evans as partner)

Trainer for Skills Matter (TTD, Patterns, DDD)

In the old days: Committer to JBoss (Founder of JBoss-IDE)

2

http://www.domainlanguage.de
http://www.domainlanguage.de

Agenda

3

Why a new build system?

Introduction to Gradle

4

Why
a

new
build

system?

Our Vision (Quote from Moshé Feldenkrais)

 Make the impossible possible

 Make the possible easy

 Make the easy elegant

5

The old bulls ...

6

Ant

Properties Resources

Targets Tasks

Flexible Toolset via dependency based programming

7

8

build.XML

vs

dynamic language

8

build.XML

vs

dynamic language

4.times { i ->
 task “hello$i” {
 printMeth(i)
 }
}

void printMeth(int i) { println “I am task number $i” }

One Way Configuration &
Simple Elements

vs

Rich Domain Model

9

Multi-Project Builds

10

Build By Convention

11

Live Demo - Hello World

Maven

Build-By-Convention
Framework Plugins

Abstractions for Software Projects

Dependency Management

12

13

pom.XML

vs

dynamic language

14

No dependency based programming

15

Convention instead of Configuration

Framework &
One Way Configuration

vs

Toolset based on
Rich Domain Model

16

Frameworkitis ...

17

... is the disease that a framework wants to do too much for you or it does it

in a way that you don’t want but you can’t change it. It’s fun to get all this

functionality for free, but it hurts when the free functionality gets in the way.

But you are now tied into the framework. To get the desired behavior you

start to fight against the framework. And at this point you often start to lose,

because it’s difficult to bend the framework in a direction it didn’t anticipate.

Toolkits do not attempt to take control for you and they therefore do not

suffer from frameworkitis.

(Erich Gamma)

Solution

18

Because the bigger the framework becomes, the greater the chances that it

will want to do too much, the bigger the learning curves become, and the

more difficult it becomes to maintain it. If you really want to take the risk of

doing frameworks, you want to have small and focused frameworks that

you can also probably make optional. If you really want to, you can use the

framework, but you can also use the toolkit. That’s a good position that

avoids this frameworkitis problem, where you get really frustrated because

you have to use the framework. Ideally I’d like to have a toolbox of smaller

frameworks where I can pick and choose, so that I can pay the framework

costs as I go.(Erich Gamma)

19

Live Demo - Java

20

There
are
no

simple builds

Project Automation

A build can do far more than just building the jar

Often repetitive, time consuming, boring stuff is still done manually

Many of those tasks are very company specific

Maven & Ant are often not well suited for this

21

The Gradle Build

Gradle is build with Gradle

Automatic release management

Automatic user’s guide generation

Automatic distribution

Behavior depends on task execution graph

22

Release Management

The version number is automatically calculated

The distribution is build and uploaded to codehaus

For trunk releases, a new svn branch is created.

A tag is created.

A new version properties file is commited.

The download links on the website are updated

23

User’s Guide

The user’s guide is written in LaTeX and generated by our build

The source code examples are mostly real tests and are automatically
included

The expected output of those tests is automatically included.

The tests are run

The current version is added to the title

24

Uploading & Execution Graph

Based on the task graph we set:

Upload Destination

Version Number

25

Gradle Overview 1

A flexible general purpose build tool

Offers dependency based programming with a rich API

Build-by-convention plugins on top

Powerful multi-project support

Powerful dependency management based on Apache Ivy

Ant tasks are first class citizens

26

Gradle Overview 2
Build Scripts are written in Groovy

We get our general purpose elements from a full blown OO language

The perfect base to provide a mix of:

Small frameworks, toolsets and dependency based programming

Rich interaction with Java

Gradle is NOT a framework

Gradle is mostly written in Java with a Groovy DSL layer on top

Offers good documentation (70+ Pages user’s guide)

Commiter -> Steven Devijver, Hans Dockter, Tom Eyckmans, Adam
Murdoch, Russel Winder

27

28

Why Groovy scripts?

28

Why Groovy scripts?

[‘Maven’, ‘Ant’, ‘Gradle’].findAll { it.indexOf(‘G’) > -1 }

28

Why Groovy scripts?

[‘Maven’, ‘Ant’, ‘Gradle’].findAll { it.indexOf(‘G’) > -1 }

Why not JRuby or Jython scripts?

28

Why Groovy scripts?

[‘Maven’, ‘Ant’, ‘Gradle’].findAll { it.indexOf(‘G’) > -1 }

Why not JRuby or Jython scripts?

Why a Java core?

Java Plugin

29

usePlugin(‘java’)
manifest.mainAttributes([
 'Implementation-Title': 'Gradle',
 'Implementation-Version': '0.1'
])
dependencies {
 compile "commons-lang:commons-lang:3.1"
 runtime “mysql:mysql-connector-java:5.1.6”
 testCompile "junit:junit:4.4"
}
sourceCompatibility = 1.5
targetCompatibility = 1.5
test {
 exclude '**/Abstract*'
}

task(type: Zip) {
 zip() {
 files(dependencies.runtime.resolve() // add dependencies to zip
 fileset(dir: "path/distributionFiles")
 }
}

Dependencies

DSL on top of Apache Ivy

Integrates with Ivy/Maven infrastructure

Support for client modules.

Support for storing libs in SVN.

Extremely powerful and flexible.

Compile only against first level deps.

30

Multi-Project Builds

Configuration Injection

Partial builds

Separate Config/Execution Hierarchy

Arbitrary Multiproject Layout

31

Multi-Project Build
ultimateApp

api
webservice
shared

32

// build script ultimate app
subprojects {
 usePlugin(‘java’)
 dependencies {
 compile "commons-lang:commons-lang:3.1"
 testCompile "junit:junit:4.4"
 }
 test {
 exclude '**/Abstract*'
 }
}

Organizing Build Logic

No unnecessary indirections

If build specific:

Within the script

Build Sources

Otherwise: Jar

33

Gradle Wrapper

Use Gradle without having Gradle installed

Useful for CI and open source projects

34

Production Ready?

YES! (If you don’t need a missing feature).

There are already large enterprise builds migrating from Ant and Maven to
Gradle

Expect 1.0 in summer

Be aware: No guaranteed API stability until 1.0

We are transparent:

The user’s guide list all missing features which might be known from other
tools.

35

36

Questions

