
Systemtap
FrOSCon (25. August 2013)

Stefan Seyfried
Linux Consultant & Trainer

B1 Systems GmbH
seife@b1-systems.de

mailto:seife@b1-systems.de

Systemtap

B1 Systems GmbH Systemtap 2 / 46

http://www.b1-systems.de

What is Systemtap?

systemtap is a scriptable monitoring and analysis environment
used for kernel

monitoring
profiling
tracing

comparable to userspace tools like top and strace

B1 Systems GmbH Systemtap 3 / 46

http://www.b1-systems.de

How Does Systemtap Work?

uses existing kernel facilities, which must be enabled:
CONFIG_RELAY logging/transfer interface from kernel to

userspace
CONFIG_KPROBES enables setting of breakpoints at arbitrary

places in the kernel and execute own code
Kprobes provides different "probes":

Kprobes can set breakpoints at arbitrary places in the kernel
Jprobes can be placed in kernel function head (access to

the argument list)
Return Probes (aka. kretprobes) will be called at the end of

functions and has access to the return values

B1 Systems GmbH Systemtap 4 / 46

http://www.b1-systems.de

How Does Systemtap Work?

systemtap provides a simple scripting language
systemtap’s scripting language makes use of kprobes and other
kernel facilities

probe kernel.function("sys_open") {
printf ("%s(%d) called sys_open\n", execname(), pid())

}

B1 Systems GmbH Systemtap 5 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 a systemtap script is started by systemtap
2 systemtap parsers translate the script into C → autogenerated

sourcecode of a kernel module
3 the module uses kprobes’ functionality to set needed probes
4 uses relay functions to transfer output from kernel to the

systemtap process
5 a C compiler compiles the kernel module sourcecode

B1 Systems GmbH Systemtap 6 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 a systemtap script is started by systemtap
2 systemtap parsers translate the script into C → autogenerated

sourcecode of a kernel module
3 the module uses kprobes’ functionality to set needed probes
4 uses relay functions to transfer output from kernel to the

systemtap process
5 a C compiler compiles the kernel module sourcecode

B1 Systems GmbH Systemtap 6 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 a systemtap script is started by systemtap
2 systemtap parsers translate the script into C → autogenerated

sourcecode of a kernel module
3 the module uses kprobes’ functionality to set needed probes
4 uses relay functions to transfer output from kernel to the

systemtap process
5 a C compiler compiles the kernel module sourcecode

B1 Systems GmbH Systemtap 6 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 a systemtap script is started by systemtap
2 systemtap parsers translate the script into C → autogenerated

sourcecode of a kernel module
3 the module uses kprobes’ functionality to set needed probes
4 uses relay functions to transfer output from kernel to the

systemtap process
5 a C compiler compiles the kernel module sourcecode

B1 Systems GmbH Systemtap 6 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 a systemtap script is started by systemtap
2 systemtap parsers translate the script into C → autogenerated

sourcecode of a kernel module
3 the module uses kprobes’ functionality to set needed probes
4 uses relay functions to transfer output from kernel to the

systemtap process
5 a C compiler compiles the kernel module sourcecode

B1 Systems GmbH Systemtap 6 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 module is loaded by systemtap
2 kprobes calls register the probes at the selected functions
3 kprobes handlers call the compiled function stub
4 the function stub tranfers information to systemtap via the

relay interface
5 systemtap receives the information via so called relay

channels
6 systemtap processes the received information and prints them

(depending on the script) to stdio
7 module is unloaded if systemtap is interrupted or the

script/kernel module has reached a controlled end point

B1 Systems GmbH Systemtap 7 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 module is loaded by systemtap
2 kprobes calls register the probes at the selected functions
3 kprobes handlers call the compiled function stub
4 the function stub tranfers information to systemtap via the

relay interface
5 systemtap receives the information via so called relay

channels
6 systemtap processes the received information and prints them

(depending on the script) to stdio
7 module is unloaded if systemtap is interrupted or the

script/kernel module has reached a controlled end point

B1 Systems GmbH Systemtap 7 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 module is loaded by systemtap
2 kprobes calls register the probes at the selected functions
3 kprobes handlers call the compiled function stub
4 the function stub tranfers information to systemtap via the

relay interface
5 systemtap receives the information via so called relay

channels
6 systemtap processes the received information and prints them

(depending on the script) to stdio
7 module is unloaded if systemtap is interrupted or the

script/kernel module has reached a controlled end point

B1 Systems GmbH Systemtap 7 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 module is loaded by systemtap
2 kprobes calls register the probes at the selected functions
3 kprobes handlers call the compiled function stub
4 the function stub tranfers information to systemtap via the

relay interface
5 systemtap receives the information via so called relay

channels
6 systemtap processes the received information and prints them

(depending on the script) to stdio
7 module is unloaded if systemtap is interrupted or the

script/kernel module has reached a controlled end point

B1 Systems GmbH Systemtap 7 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 module is loaded by systemtap
2 kprobes calls register the probes at the selected functions
3 kprobes handlers call the compiled function stub
4 the function stub tranfers information to systemtap via the

relay interface
5 systemtap receives the information via so called relay

channels
6 systemtap processes the received information and prints them

(depending on the script) to stdio
7 module is unloaded if systemtap is interrupted or the

script/kernel module has reached a controlled end point

B1 Systems GmbH Systemtap 7 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 module is loaded by systemtap
2 kprobes calls register the probes at the selected functions
3 kprobes handlers call the compiled function stub
4 the function stub tranfers information to systemtap via the

relay interface
5 systemtap receives the information via so called relay

channels
6 systemtap processes the received information and prints them

(depending on the script) to stdio
7 module is unloaded if systemtap is interrupted or the

script/kernel module has reached a controlled end point

B1 Systems GmbH Systemtap 7 / 46

http://www.b1-systems.de

Interaction of kprobes, relay and systemtap

1 module is loaded by systemtap
2 kprobes calls register the probes at the selected functions
3 kprobes handlers call the compiled function stub
4 the function stub tranfers information to systemtap via the

relay interface
5 systemtap receives the information via so called relay

channels
6 systemtap processes the received information and prints them

(depending on the script) to stdio
7 module is unloaded if systemtap is interrupted or the

script/kernel module has reached a controlled end point

B1 Systems GmbH Systemtap 7 / 46

http://www.b1-systems.de

Influence on the System – Support

by using self compiled kernel modules, problems with Enterprise
support might occur
value of /proc/sys/kernel/tainted is no longer "0"

B1 Systems GmbH Systemtap 8 / 46

http://www.b1-systems.de

Influence on the System – Performance

only little overhead (microseconds) (depending on function’s
complexity)
long time use is not problematic as memory is limited
too "slow" probes which are called very often are skipped
if a probe is skipped 100 times, the complete systemtap script is
stopped and unloaded

B1 Systems GmbH Systemtap 9 / 46

http://www.b1-systems.de

Influence on the System – Stability

possible system crashes when script is loaded
test scripts thoroughly on dedicated test machines
if a crash occurs, it mostly occurs instantly when loading the
script
upstream developers work on avoiding such crashes which
strongly depend on the kernel version used

B1 Systems GmbH Systemtap 10 / 46

http://www.b1-systems.de

Installation

B1 Systems GmbH Systemtap 11 / 46

http://www.b1-systems.de

Installation

systemtap is packaged for all distributions
the kernel-development and debuginfo/debugsource packages
are also needed
if the debuginfo-package is missing, running a script which
uses kernel functions leads to errors:

stap open.stp
semantic error: no match while resolving probe point
syscall.open

Pass 2: analysis failed. Try again with another
’--vp 01’ option.

B1 Systems GmbH Systemtap 12 / 46

http://www.b1-systems.de

Compiling Your Own Kernel

when using a self compiled kernel, certain options need to be set:

CONFIG_DEBUG_INFO=y
CONFIG_KPROBES=y
CONFIG_RELAY=y
CONFIG_DEBUG_FS=y
CONFIG_MODULES=y
CONFIG_MODULE_UNLOAD=y

B1 Systems GmbH Systemtap 13 / 46

http://www.b1-systems.de

Scripting

B1 Systems GmbH Systemtap 14 / 46

http://www.b1-systems.de

Hello World

the complex part: scripting language
allows complicated procedures
simplest example:

cat hw.stp
probe begin {

print ("hello world\n")
exit ()

}

stap hw.stp
hello world

B1 Systems GmbH Systemtap 15 / 46

http://www.b1-systems.de

Variables

only two basic types: integer and string (nothing else!)
variables starting with $ depict the variables in the source code
of the instrumented function
"own" variables do not start with $
default: local variables, global variables are declared with
global var

unused variables are optimized away by systemtap

B1 Systems GmbH Systemtap 16 / 46

http://www.b1-systems.de

Variables

global foo

probe begin {
bar = 5
foo = 42
printf("hello: %d -> %d\n", foo, bar)
foo = bar
exit()

}

probe end {
printf("byebye: %d\n", foo)

}

B1 Systems GmbH Systemtap 17 / 46

http://www.b1-systems.de

Conditionals (if)

exactly like C:

if (expression) {
foo

} else {
bar

}

B1 Systems GmbH Systemtap 18 / 46

http://www.b1-systems.de

Loops (for, while, foreach)

foreach used to iterate through arrays
while only as top-controlled loop
for like C with two semicolon-separated fields:

for (i=0; i < 42; i++) {
printf("#%d Element: %d\n", i, array[i])

}

i=42
while (i > 0) {

i = do_something_fancy(i);
}

B1 Systems GmbH Systemtap 19 / 46

http://www.b1-systems.de

Command Line Arguments

like normal applications or scripts, arguments can be passed on
the command line
argument variables are: $n (example: $1 $2 ...)
to interpret a variable as string, use @ instead of $ (example:
@2)
Note: for every call with a different command line, the script
needs to be recompiled as arguments will be hardcoded in the
compiled code

B1 Systems GmbH Systemtap 20 / 46

http://www.b1-systems.de

Helper Functions

Systemtap provides a large set of helper functions:
printf(format) / sprintf(format) same as in C
print(string) output a string
strlen(string) determine the length of a string
isinstr(strA, substrB) check for a substring
strtol(string, base as in C, converts a string to an integer

exit() end the systemtap script

B1 Systems GmbH Systemtap 21 / 46

http://www.b1-systems.de

Context Helper Functions

Systemtap provides context specific helpers to relate a call to a
userspace process:

pid() Process ID of the userspace process which triggered the
instrumented kernel function

execname() Name of the userspace process
cpu() Current CPU ID the userspace process is running on
uid() Current user ID of the userspace process

probefunc() Name of the instrumented kernel function, useful with
generic probes

B1 Systems GmbH Systemtap 22 / 46

http://www.b1-systems.de

Tapsets

tapsets call predefined probe functions
Example:

probe vfs.read {}

excerpt from the corresponding tapset:

probe vfs.read = kernel.function ("vfs_read")

it is basically an Alias
systemtap copies the function vfs_read and inserts the scripted
block
predefined tapsets in /usr/share/systemtap/tapset/*

B1 Systems GmbH Systemtap 23 / 46

http://www.b1-systems.de

Examples – Provided Scripts

example scripts under
/usr/share/doc/packages/systemtap/examples/

an explanation for every example is located in
/usr/share/doc/packages/systemtap/examples/index.html

B1 Systems GmbH Systemtap 24 / 46

http://www.b1-systems.de

Example – forktracker.stp
example script: process/forktracker.stp
traces the creation of new processes in the system
consists basically of those two probes:

probe kprocess.create {
printf("%-25s: %s (%d) created %d\n",

ctime(gettimeofday_s()), execname(), pid(),
new_pid)

}
probe kprocess.exec {

printf("%-25s: %s (%d) is exec’ing %s\n",
ctime(gettimeofday_s()), execname(), pid(),
filename)

}

used kernel functions:
copy_process
do_execve, compat_do_execve

B1 Systems GmbH Systemtap 25 / 46

http://www.b1-systems.de

Example Output – forktracker.stp

Example output of forktracker.stp
stap process/forktracker.stp
Wed Feb 2 15:38:54 2011 : bash (3747) created 6879
Wed Feb 2 15:38:54 2011 : bash (6879) is exec’ing /bin/ls
Wed Feb 2 15:39:20 2011 : bash (3747) created 6880
Wed Feb 2 15:39:20 2011 : bash (6880) is exec’ing /usr/bin/touch
Wed Feb 2 15:39:26 2011 : bash (3747) created 6881
Wed Feb 2 15:39:26 2011 : bash (6881) is exec’ing /bin/rm

B1 Systems GmbH Systemtap 26 / 46

http://www.b1-systems.de

Example – disktop.stp

example script: io/disktop.stp
provides a "top ten" digest of disc access (reading/writing) in
the system every five minutes
monitoring "docks" onto kernel functions vfs_read and
vfs_write, saves collected data in arrays

B1 Systems GmbH Systemtap 27 / 46

http://www.b1-systems.de

Example Output – disktop.stp

Example output – disktop.stp
stap io/disktop.stp

Wed Feb 2 13:18:19 2011 , Average: 0Kb/sec, Read: 0Kb, Write: 0Kb

UID PID PPID CMD DEVICE T BYTES
0 1833 1 syslog-ng vda2 W 199

Wed Feb 2 13:18:49 2011 , Average: 0Kb/sec, Read: 0Kb, Write: 0Kb

UID PID PPID CMD DEVICE T BYTES
0 3438 1 master vda2 W 1

51 3468 3438 pickup vda2 R 1

B1 Systems GmbH Systemtap 28 / 46

http://www.b1-systems.de

Example – iotime.stp

Example script: io/iotime.stp
Syntax:

iotime.stp [-c <Programm>]

Which read calls last how long?

B1 Systems GmbH Systemtap 29 / 46

http://www.b1-systems.de

Example Output – iotime.stp

Example output – iotime.stp
stap io/iotime.stp -c ’hostname’
sles11a
WARNING: Number of errors: 0, skipped probes: 4
7445 5459 (hostname) access /etc/ld.so.cache read: 0 write: 0
7716 5459 (hostname) access /lib64/libc.so.6 read: 832 write: 0
7719 5459 (hostname) iotime /lib64/libc.so.6 time: 3
8951 5459 (hostname) access /usr/share/locale/locale.alias read: 8192 write: 0
8955 5459 (hostname) iotime /usr/share/locale/locale.alias time: 16
9031 5459 (hostname) access /usr/lib/locale/en_US.utf8/LC_CTYPE read: 0 write: 0
9106 5459 (hostname) access <unknown> read: 0 write: 0

B1 Systems GmbH Systemtap 30 / 46

http://www.b1-systems.de

Example – nettop.stp

example script: network/nettop.stp
summarizes network access of processes in 5 second intervals
used kernel functions: dev_queue_xmit and
netif_receive_skb

B1 Systems GmbH Systemtap 31 / 46

http://www.b1-systems.de

Example Output – nettop.stp

Example output – nettop.stp
stap network/nettop.stp

PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND

PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
0 0 eth0 0 1 0 0 swapper

3720 1000 eth0 1 0 0 0 sshd

PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
0 0 eth0 0 2 0 0 swapper

3720 1000 eth0 1 0 0 0 sshd

B1 Systems GmbH Systemtap 32 / 46

http://www.b1-systems.de

Probes

B1 Systems GmbH Systemtap 33 / 46

http://www.b1-systems.de

Probes in General

probes start with probe probename

probe lists are possible: probe syscall.open,
syscall.close

overview of available probes: man 3stap stapprobes

B1 Systems GmbH Systemtap 34 / 46

http://www.b1-systems.de

Optional Probes

optional probes allow to write generic systemtap scripts
if the probe is not available for this kernel version, no error
occurs
optional probes are postfixed with a question mark "?"
should a list of possible probes not be tried furthter after the
first match, use an exclamation mark (!) instead of the question
mark

probe foo ?, bar ? { ... }

probe green !, yellow !, red { ... }

B1 Systems GmbH Systemtap 35 / 46

http://www.b1-systems.de

Conditional Probes

probe is only executed if condition is met
probe name if (expression) { ... }

useful to "filter" probes
either source code variables, command line arguments or global
variables are possible

B1 Systems GmbH Systemtap 36 / 46

http://www.b1-systems.de

Special Probes: begin, end, never

begin is executed once during start
end is executed once at the end (exit(), Ctrl + c)

never is never executed, but analysed by the compiler (useful
for testing of optional probes)

B1 Systems GmbH Systemtap 37 / 46

http://www.b1-systems.de

Return Probes

return probes instrument the end of a function
probe name.return

$return: return value of the function
sometimes $return is not available if code is optimized (e.g.
inlined functions). Better with GCC 4.5+

B1 Systems GmbH Systemtap 38 / 46

http://www.b1-systems.de

Kernel Functions

kernel function kernel.function("do_fork") /
kernel.function("do_fork").return

wildcard kernel.function("*copy*")

wildcard in source file kernel.function("*@kernel/fork.c")

kernel module functions module("name ").function("*")

B1 Systems GmbH Systemtap 39 / 46

http://www.b1-systems.de

Timer Probes

probe timer.s(N)

probe timer.ms(N)

probe timer.us(N)

probe timer.ns(N)

probe timer.hz(N)

probe timer.ms(N).randomize(M)

. . .

B1 Systems GmbH Systemtap 40 / 46

http://www.b1-systems.de

Functions

B1 Systems GmbH Systemtap 41 / 46

http://www.b1-systems.de

Formatted Output

thread_indent(N)

relative indenting to display the calling order of functions

Example:

probe kernel.function("*@mm/*.c") {
printf("%s > %s\n", thread_indent(2), probefunc())

}
probe kernel.function("*@mm/*.c").return {

printf("%s < %s\n", thread_indent(-2), probefunc())
}

B1 Systems GmbH Systemtap 42 / 46

http://www.b1-systems.de

Formatted Output

Result:

0 usb-storage(21043): > blk_complete_request
7 usb-storage(21043): > __blk_complete_request

14 usb-storage(21043): < __blk_complete_request
18 usb-storage(21043): < blk_complete_request

B1 Systems GmbH Systemtap 43 / 46

http://www.b1-systems.de

Command Execution

system("command ")

executes a command
executing in the background to not block the probe
useful for long running systemtap analysis to signal conditions

B1 Systems GmbH Systemtap 44 / 46

http://www.b1-systems.de

errno_str

errno_str:string (e:long)

returns the symbol for a given errno
Example: 12, for ENOMEM. (Cannot allocate memory)
useful to translate errnos into readable symbols

B1 Systems GmbH Systemtap 45 / 46

http://www.b1-systems.de

Thank you!

Stefan Seyfried
seife@b1-systems.de

mailto:seife@b1-systems.de

	Systemtap
	What is Systemtap?
	How Does Systemtap Work?
	Influence on the System
	Installation
	Scripting
	Probes
	Functions

	Thank you!

